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Alfvén waves	can	exhibit	a	range	of	bifurcations	upon	their	
interaction	with	fast	ions
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FIG. 1. (a) Spectrogram of edge magnetic activity mea-
sured in a hot-ion H-mode JET discharge (shot No. 40332).
PICRH , 6.5 MW, PNBI # 16 MW, BT ≠ 3.45 T, Ip ≠
3.7 MA, Tes0d , 7 12 keV and knel ≠ s2 5d 3 1019 m23.
The triangular waveform appearing in the spectrum corresponds
to the directly coupled perturbation from an external antenna
[5]. The gray scale corresponds to dBedgesTd on a logarithmic
scale. The plasma starts at 40 s. (b) provides a detailed view
of the spectrogram in the region where TAEs appear, while (c)
shows the spectrum of the amplitude of magnetic fluctuations
for two of the TAE bands appearing in (b).

represented by an effective collision frequency neff [9].
In the experiment reported herein, the fast ion relaxation
process due to velocity space diffusion induced by the
ICRH wave field is expected to dominate over that due
to Coulomb collisions.

FIG. 2. Top: Spectrogram of edge magnetic activity mea-
sured in a hot-ion H-mode JET discharge (shot No. 40328).
Plasma and machine parameters are similar to Fig. 1. Bottom:
Nonlinear splitting of the TAE spectral line and the period dou-
bling bifurcation in snapshots of the mode power spectrum; left:
calculated power spectrum of the saturated solution of Eq. (1)
(with f ≠ 3py64) as parameter gyneff increases; right: time
evolution of experimental spectrum of magnetic activity for the
n ≠ 7 mode during the increase of PICRH (shot No. 40328).
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Typical	scenarios:
• fixed	frequency	and	frequency	splitting->	frequency	is	determined	by	the	equilibrium
• chirping	and	avalanches	->	frequency	is	highly	affected	by	the	fast	ions	response
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FIG. 2. Average q-profile evolution from the LRDFIT equi-
librium code from three discharges. The inset at the upper-
right shows a cross-section of NSTX with the magnetic field
iso-surfaces at t = 320 ms, as reconstructed through the EFIT
code. The plasma is limited by the center stack.

radii of 69, 59 and 49 cm. The maximum acceleration
voltage is 90 kV. The injected species is deuterium. The
velocity of fast ions resulting from charge-exchange of the
injected neutrals is up to five times the Alfvén velocity.
Several resonant mechanisms are thus accessible to desta-
bilize waves in the Alfvén frequency range, and a large
variety of Alfvénic instabilities are commonly observed
[5].

Typical density and temperature profiles for the L-
mode discharges investigated here are shown in Fig. 1.
No direct measurements of the safety factor profile,
q(R, t), are available for the time of interest, t = 240�340
ms. A reconstruction of the average q(R, t) has been per-
formed through the equilibrium code LRDFIT by varying
the NB timing on a shot-to-shot basis. All the other ex-
perimental parameters are kept constant. The evolution
of the q value at the magnetic axis and at the minimum-q
location (q0 and q

min

, respectively) is presented in Fig. 2,
showing that the discharges under investigation have a re-
versed shear q profile. A cross-section of NSTX showing
the equilibrium magnetic surfaces is also shown in Fig. 2.

For this experiments, a magnetic configuration with
inner wall limited plasmas was chosen, cf. inset in Fig. 2.
The goal was to obtain a up/down symmetric configura-
tion, without a diverted region. This should simplify the
comparison with numerical codes, such as M3D-K [13],
simulating Alfvén modes in tokamak plasmas, which are
not yet able to simulate adequately the divertor region.
The results of the comparison between experiments and
simulation will be reported in a separate publication.

FIG. 3. (Top) Example of spectrogram showing TAE activity
in the range f = 70 � 200 kHz. (Bottom) Waveforms of NB
power (blue) and neutron rate (red). Note the drop of the
neutron rate at t ⇡ 360 ms, corresponding to an avalanche.

III. EXPERIMENTAL OBSERVATIONS ON TAE
DYNAMICS

A. General features of mode dynamics

Figure 3 illustrates a spectrogram from Mirnov coils
measuring magnetic field fluctuations close to the low-
field side vacuum vessel wall. Multiple modes are visible
in the frequency range 70� 200 kHz. They are identified
as toroidicity-induced Alfvén eigenmodes (TAE), desta-
bilized by the injected fast ions from NB injection. The
modes are fist destabilized during the current ramp-up
(t  200 ms). According to previous studies [14], in this
initial stage they are better characterized as reverse-shear
Alfvén eigenmodes (RSAEs). Starting from the begin-
ning of the current flat-top, they gradually evolve into
TAEs [7]. Toroidal mode numbers are n = 2 � 8. Typ-
ically, the dominant modes have n = 2, 3 and frequency
90 � 120 kHz. As the discharge evolves, the modes ex-
hibit a quasi-stationary behavior, then their dynamics
becomes more turbulent, especially when a second NB
source is added. After that, relatively large excursions in
both amplitude and frequency are measured, eventually
ending up with a dramatic burst of TAE activity. The
latter is dubbed avalanche, and correlates with a drop
in the volume-averaged neutron rate of up to 30% [6][7].
Note that only down-chirping TAE modes are observed
on NSTX, contrary to other experiments from which both
upwards and downwards frequency sweeps have been re-
ported [9][15]. The mode evolution described above is
representative of discharges spanning a broad range of
plasma parameters (e.g. density and temperature) and
moderate NB power, below ⇡ 3 MW. At higher power,
the plasma eventually undergoes a transition from L to
H confinement mode. The analysis of avalanches in H
mode is beyond the scope of this paper.

Fasoli,	PRL	1998 Fredrickson,	PoP 2006 Podestà,	NF	2011
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Prediction	of	character	of	energetic-particle-driven	
transport	in	tokamaks

What	tools	can	be	used	to	model	each	type	of	transport?

Diffusive	transport	(typical	for	fixed-frequency	modes)
• can	be	modelled	using	reduced	theories,	such	as	quasilinear
• typical	in	conventional	tokamaks
Convective	transport	(typical	for	chirping	frequency	modes)
• needs	to	retain	full	nonlinear	features	of	the	wave,	is	

sustained	by	nonlinear	phase-space	structures
• typical	in	spherical	tokamaks
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• typical	in	spherical	tokamaks

In	this	talk:	
• development	of	a	criterion	for	the	likelihood	of	each	nonlinear	scenario	and	its	

comparison	with	experiments
• quasilinear	diffusion	approach	and	perspectives	for	whole	device	modeling

Both	can	lead	to	
similar	fast	ion	
loss	levels,	up	to	
40%



Starting point:	kinetic equation plus wave power balance

Assumptions:
• Perturbative procedure	for																					
• Truncation at third order due to closeness to marginal	stability
• Bump-on-tail modal	problem,	uniform mode structure
Cubic equation:	lowest-order nonlinear correction to the evolution of mode amplitude	A:

Berk,	Breizman and Pekker,	PRL	1996											Lilley,	Breizman and Sharapov,	PRL	2009

Weak	nonlinear	dynamics	of	driven	kinetic	systems	can	be	used	to	distinguish	
between	fixed-frequency	and	chirping	responses
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Weak nonlinear dynamics	of driven kinetic systems	can be used to distinguish
between fixed-frequency and chirping responses



Weak nonlinear dynamics	of driven kinetic systems	can be used to distinguish
between fixed-frequency and chirping responses

Starting point:	kinetic equation plus wave power balance

Assumptions:
• Perturbative procedure	for																					
• Truncation at third order due to closeness to marginal	stability
• Bump-on-tail modal	problem,	uniform mode structure
Cubic equation:	lowest-order nonlinear correction to the evolution of mode amplitude	A:

• If nonlinearity is weak:	linear	stability,	solution saturates at a	low level and f	merely flattens
(system	not allowed to further evolve	nonlinearly).

• If solution of cubic equation explodes:	system	enters a	strong nonlinear phase with large
mode amplitude	and can be driven unstable (precursor	of chirping modes).	

Berk,	Breizman and Pekker,	PRL	1996											Lilley,	Breizman and Sharapov,	PRL	2009
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A	criterion for	chirping onset in	tokamaks

Using an action and angle formulation,	the previous weak nonlinear
theory leads	to

Phase space integration
Eigenstructure information:

Resonance surfaces:

Criterion was incorporated into NOVA-K	code:	
nonlinear prediction from linear	physics elements
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Figure 4. DIII-D shot #152828. The point
(‹scatt = 1, ‹drag = 1) corresponds to the experimental
situation, is now in the positive region.

positive ones represent expected steady-state. The re-
sults were obtained by using the normalization you sug-
gested for the criterion.

Chirping events are therefore enhanced by the coher-
ence introduced by dynamical friction (drag or slowing-
down) and are inhibited by stochasticity arising from dif-
fusive processes, such as pitch-angle scattering, and from
background turbulence. Stochastic events lead to loss
of phase information that contribute to destroy coherent
structures. Since NBI ions heat the plasma via slowing
down while ICRH-accelerated ions transfer their energy
via a di�usive process, it is instructive to predict whether
a given discharge will give rise to chirping structures, in
terms of the collisional operators that act on the resonant
particle distribution.

In summary, we have performed a novel study of the
early phase of chirping events in tokamak plasmas by
means of realistic calculations of collisional coe�cients
using NOVA-K code. Microturbulence was shown to have
a profound e�ect on whether or not chirping events will
start in the experiment. Some factors that may influence
the chirping formation are not captured by the current
theory and deserve further investigation. For example,
static 3D ripple fields have been shown to a�ect bursting
Alfvén modes and reduce chirping [cite Bortolon, 2013].
Other limitation is that the cubic equation assumes small

mode amplitude, which is not necessarily the case in the
experiment.

Limitations of this work:
mode amplitude needs to be small
Ripple, energy di�usion, extrinsic (or intrinsic?) di�u-

sion due to mode overlap contribute to bring it closer to
the boundary

NTM e�ect
Chirping events require particles to keep their phase in-

formation from one bounce to another in order to move
nonlinear structures altogether over phase space without
losing its coherence. The lack of chirping observation in-
dicates that details of the phase trajectory of resonant
particles are not essential to be known since stochastic
dynamics dominates. This suggests that a quasilinear
di�usive regime is likely to model the transport of fast
ions. This work provides useful information on the ap-
plicability criterion for such reduced models and on pre-
dictive capabilities.

Chirping instabilities constitute an interesting exam-
ple in which turbulence is beneficial for the confinement.
Transition from L to H mode, which is normally avoided
for fast ion studies in DIII-D since it conflicts with some
of the diagnostics.

the formation of a density pedestal at the L-H transi-
tion can cause a sharp change in beam deposition, which
then causes an instant change in the velocity phase gra-
dients of the full energy beam ions.

Spherical tokamaks have higher betas and relative ro-
tation shear, as compared to conventional ones.

Our interpretation is consistent with the fact that DIII-
D plasmas that produce chirping have always been H-
modes

Future experiments: high rotation shear and higher
beta.

How far NSTX is from the boundary; Initial low beam
power shots of L-mode NSTX-U showed nonchirping
Alfvénic modes. However they were poorly diagnostized.

ÿ
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are the mean poloidal and toroidal transit frequencies
of the equilibrium orbit. The phase-space integration is
given by
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where m

EP

is the mass of EPs, c is the light speed
and ‡Î accounts for counter- and co-passing particles.
The e�ective collisional operator can be cast in the form
C[f ] = ‹

3
scatt

ˆ

2
f

ˆ�2 + ‹

2
drag

ˆf

ˆ� , where ‹

scatt

and ‹

drag

are
understood to be the e�ective pitch-angle scattering and
drag (slowing down) coe�cients, defined in Eq. 6 of Ref.
[15]. ‹

stoch

is the e�ective stochasticity, which includes
‹

scatt

. In equation (1), the circumflex denotes normal-
ization with respect to “ = “

L

≠ “

d

(growth rate minus
damping rate) and t is the time normalized with the same
quantity. Vlasov simulation codes have shown [19, 20]
that the blow-up solutions of (1) are precursors to chirp-
ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the e�ective stochastic relaxation felt
by the EPs and the e�ective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional ‹

scatt

and
‹

drag

and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in di�erent tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , P

Ï

, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for ‹

scatt

(considered the only con-
tribution to ‹

stoch

) and ‹

drag

, although very insightful,
appears insu�cient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not su�cient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, ” (Ê ≠ �

l

(P
Ï

, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over ·1 and redefinition of the integra-
tion variable z = ‹

drag

· one finds the following criterion
for the non-existence of steady solutions of (1):
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For the resonances to be linearly destabilizing to pos-

itive energy waves, Int (plotted in Fig. 2) is the only
component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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The	criterion	predicts	that	micro-turbulence	should	be	key	in	determining	the	
likely	nonlinear	character	of	a	mode,	e.g.,	fixed-frequency	or	chirping



Correlation	between	chirping	onset	and	a	marked	reduction	
of	the	turbulent	activity	in	DIII-D

Duarte	et	al,	NF	2017.

• The	thermal	ion	
heat	conductivity	
is	used	as	a	proxy	
for	the	fast	ion	
anomalous	
transport

• experiments in	
DIII-D	are	
scheduled to
further test the
proposed criterion



Correlation	between	chirping	onset	and	a	marked	reduction	
of	the	turbulent	activity	in	NSTX

• The	thermal	ion	
heat	conductivity	
is	used	as	a	proxy	
for	the	fast	ion	
anomalous	
transport

• GTS	code is being
used as	na	
independent
calculatation of
fast ion diffusivity
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Chirping is ubiquitous in	NSTX	but rare in	DIII-D,	which is consistent with the inferred fast ion micro-turbulent levels
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Nonlinear	chirping	vs	Quasilinear	approach

• Requires	particles	to	remember	
their	phases	from	one	trapping	
bounce	to	another;

• Full	kinetic	approach	necessary;

• Entropy	is	conserved	in	the	
absence	of	collisions.	

• Requires	particles	to	forget	their	phase	(via	
collisions,	turbulence	or	mode	overlap);

• Assumes	that	themodes	remain	linear	
(therefore	NOVA	is	suited)	while	the	
distribution	function	is	allowed	to	slowly	
evolve	nonlinearly	in	time;

• Entropy	increases	due	to	particle	memory	
loss.

The	chirping	criterion	is	a	useful	tool	to	make	sure	the	quasilinear	approach	is	
applicable	for	a	given	mode



Resonance-broadened	quasilinear	(RBQ)	diffusion	model1

Formulation	in	action	and	angle	variables2,3
• Diffusion	equation:

• Mode	amplitude	evolution:

:	unperturbed	(kinetic)	energy;										:	canonical	toroidal	momentum	

Broadening	is	the platform that	allows	for	momentum	and	energy	exchange	between	
particles	and	waves:

1Berk,	Breizman,	Fitzpatrick,	NF	1995.
2Kaufman	PoF 1972.	

3Duarte,	Gorelenkov and	Berk,	2017	(unpublished).

Chapter 5

1D slanted RBQ model

Using (1.2), the 1D QL equations written in NOVA notation, are
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C [f ] is a collisional operator acting on the distribution function. The equation for the

amplitude of each mode can be written formally without the explicit contributions from

other modes. The amplitudes satisfy the equation from linear theory and can be written as

dC2
n(t)

dt
= 2 (�L,n � �d,n)C

2
n(t) (5.1)

where �L,n is the linear growth of the mode and �d,n is the wave damping rate in the

absence of an instability source. �L,↵ is given by (4.1). The broadening of the resonance

can be performed by choosing F as the window function with width 4I that satisfies
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´1
�1 FdI = 1 (in principle could be taken as a flat-top function),

D(I; t) = ⇡n2C2
n (t) E2F (I � Ir)

�

�

@⌦l

@I

�

�

G⇤
m0lGml

The derivatives @⌦l

@I
are provided by NOVA outputs.

5.1 Resonance broadening

QL theory assumes that mode amplitudes remain small and therefore particles follow un-

perturbed orbits. In QL theory, particles are in resonance only if they exactly satisfy the

resonance condition. This implies that resonant particles can only diffusive over a point,

which is clearly an ill-posed problem. Dupree [93] realized that the turbulent spectrum

contributes to diffuse particles away from their original unperturbed trajectories1. In a

pioneering work, his theory accounted for the orbit diffusion due to trapped particle de-

viation from their original path by means of the resonance broadening. Incorporating

resonant island width into QL theory introduces an additional nonlinearity in the problem.

The broadened width, that replaces a delta function on the resonance, is a more realistic

platform that allows for momentum and energy exchange between particles and waves via

Landau damping.

1In principle, any mechanism that leads to phase randomization should contribute to the broadening.
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Far from marginal stability

For this case �⌦ ⇡ a!b. The expected saturation level from analytical theory is

!b/⌫scatt ⌧ 1 leads to !b ' ⌫scatt

⇣

�L
�d

� 1
⌘1/4

which, if substituted in (5.3) gives

c = 2.71

5.1.3 QL equations with a broadened coefficient

Using (1.2), the 1D QL equations written in NOVA notation, are

@f

@t
=

@

@I

 

X

n,l,m,m0

D(I; t)

!

@

@I
f +

⌫3
scatt

⇣

�

�

@⌦l

@I

�

�

Ir

⌘2

@2(f � f0)

@I2
;

D(I; t) = ⇡n2C2
n (t) E2 � (I � Ir)
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@I

�

�

G⇤
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C [f ] is a collisional operator acting on the distribution function. The equation for the

amplitude of each mode can be written formally without the explicit contributions from

other modes. The amplitudes satisfy the equation from linear theory and can be written as

dC2
n(t)

dt
= 2 (�L,n � �d,n)C

2
n(t) (5.4)

where �L,n is the linear growth of the mode and �d,n is the wave damping rate in the

absence of an instability source. �L,↵ is given by (4.1). The broadening of the resonance

CHAPTER 1. INTRODUCTION 26

trajectory, which motivates the variable change Jp ! E (Jp, P', µ) = E (J1, J2, J3). The

following operator is intended to act on a function f = f (Jp, P', µ):

@

@I
= l1

@

@J1
+ l2

@

@J2
+ l3

@

@J3

Now the above operator is rewritten to act on a function g = g (E , P', µ)3:

@

@I
=

@E
@I

@

@E + l2
@

@J2
+ l3

@

@J3
= (l1!1 + l2!2 + l3!3)

@

@E + l2
@

@J2
+ l3

@

@J3

E , being the Hamiltonian of the unperturbed motion, satisfies !1 = @E
@J1

, !2 = @E
@J2

and

!3 =
@E
@J3

, which are the poloidal, toroidal and gyro frequencies, respectively. For resonant

particles l1!1 + l2!2 + l3!3 is equal to the mode frequency !. l2 is minus the toroidal mode

number, �n, and l3 needs to be taken zero for low-frequency modes, as compared to the

cyclotron resonance. Consequently,

@

@I
= !

@

@E � n
@

@P'

= !
@

@E
�

�

�

�

P 0
'

= �n
@

@P'

�

�

�

�

E 0
(1.2)

where P 0
' = P' + nE/! and E 0 = E + !P'/n. Another way of deriving the above operator

is to project the gradient
⇣

@
@E ,

@
@P'

, @
@µ

⌘

onto the path that preserves condition (1.1), which

is given by (!,�n, 0). Consequently, @
@I

= ! @
@E �n @

@P'
. Therefore, it may be useful to make

a transformation (P', E) ! (I (P', E) , E 0 (P', E)) where I = �P'/n and E 0 = E + !P'/n.
3Note that this transformation involves the use of a new basis which is not orthogonal, although the

variables are linearly independent. After the transformation is made, E is to be treated as an independent
variable not related to P

'

and µ. The transformation can be formally understood as if J
p

were the new
Hamiltonian.
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separatrix of width 2!b,n. Each particle satisfy a nonlinear pendulum equation with

a given bounce frequency !b related to its energy, which leads to phase mixing ;

• the effective collisional frequency ⌫eff since collisions imply that particles are redis-

tributed, being kicked in and out of the separatrix, which leads to particle decorre-

lating the resonance. This increases the effective range of the resonance region since

more particles are allowed to interact with the mode via the resonant platform. The

presence of collisions is required by QL theory in order to guarantee enough phase

information erasure, to assure that the ballistic term can be averaged out to zero.

Consequently

4⌦ = a!b,n + b |�n|+ c⌫scatt (5.2)

5.1.2 Expected saturation levels from single mode perturbation

theory

Analytic results far from and close to marginal stability,

lead to the choice of parameters ⌘ and �. The saturation levels are reproduced with

a choice of ⌘ such that the momentum exchanged as the distribution flattens due to LBQ

diffusion is equivalent to that exchanged by the flattening of particles in the separatrix due

to canonical perturbation theory. The expression for 4⌦ could in principle be written more

generally in terms of a weighted sum, as used in [29, 30].

-
_

Broadened	delta
function	
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2.3 A criterion for chirping onset

It has been shown [8] that a simplified bump-on-tail approach that only accounts for a

single representative value for the collisional coefficients is insufficient to make predictions

for the nonlinear nature of a mode in a tokamak. The missing physics were shown to be the

absence of non-uniform mode structures, (multiple) resonance surfaces and poloidal bounce

averages that account for particle trajectories on a poloidal cross section.

A necessary but not sufficient condition for the existence of fixed-frequency, steady-state

solutions would be that the real component of the right-hand side of Eq. (2.1) be negative

at late times when the response is stationary, i.e. when the nonlinear term is allowed to

balance the linear growth. The delta function � (⌦j (P', E , µ)) that restricts the integration

to the resonance condition can be exploited and the following criterion for the existence of

fixed-frequency oscillations is obtained [8]:

Crt =
1

N

X

j,�k

ˆ
dP'

ˆ
dµ

|Vn,j|4
!✓⌫4

drag

�

�

�

�

@⌦j

@I

�

�

�

�

@f

@I
Int > 0, (2.3)

where

Int ⌘ Re

ˆ 1

0

dz
z

⌫3stoch
⌫3drag

z � i
exp

"

�2

3

⌫3
stoch

⌫3
drag

z3 + iz2

#

(2.4)

and N is a normaliation for Crt, which consists in the same sums and integrations that

appear in the numerator of (2.3) but in the absence of Int. In eqs. (2.3) and (2.4) , the

quantities ⌧b, ⌫drag, ⌫stoch, Vn,j and ⌦j are understood to be evaluated at E = E 0 � !P'/n.

Criterion (2.3) was incorporated into NOVA-K making use of a polynomial interpolation for

Int. Crt provides a prediction for the likelihood of a fully nonlinear phenomenon obtained
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It has been shown [8] that a simplified bump-on-tail approach that only accounts for a

single representative value for the collisional coefficients is insufficient to make predictions

for the nonlinear nature of a mode in a tokamak. The missing physics were shown to be the

absence of non-uniform mode structures, (multiple) resonance surfaces and poloidal bounce

averages that account for particle trajectories on a poloidal cross section.

A necessary but not sufficient condition for the existence of fixed-frequency, steady-state

solutions would be that the real component of the right-hand side of Eq. (2.1) be negative
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and N is a normaliation for Crt, which consists in the same sums and integrations that

appear in the numerator of (2.3) but in the absence of Int. In eqs. (2.3) and (2.4) , the

quantities ⌧b, ⌫drag, ⌫stoch, Vn,j and ⌦j are understood to be evaluated at E = E 0 � !P'/n.

Criterion (2.3) was incorporated into NOVA-K making use of a polynomial interpolation for

Int. Crt provides a prediction for the likelihood of a fully nonlinear phenomenon obtained
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Parametric	dependencies	of	a broadened	resonance

• old	idea	(Dupree	PoF 1966):	the	turbulent	spectrum	
contributes	to	diffuse	particles	away	from	their	original	
unperturbed	trajectories	

• broadening	specification:

• analytical	predictions	for	the	simplified	driven,	bump-on-tail	
system	close	to	and	far	from	marginal	stability	lead	to	
particular	choices	of	coefficients	a,	b	and	c.

• guiding-center	code	ORBIT	is	being	used	to	verify	the	
resonance	width	scaling	for	realistic	mode	structure	and	
resonances	calculated	by	NOVA.
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separatrix of width 2!b,n. Each particle satisfy a nonlinear pendulum equation with

a given bounce frequency !b related to its energy, which leads to phase mixing ;

• the effective collisional frequency ⌫eff since collisions imply that particles are redis-

tributed, being kicked in and out of the separatrix, which leads to particle decorre-

lating the resonance. This increases the effective range of the resonance region since

more particles are allowed to interact with the mode via the resonant platform. The

presence of collisions is required by QL theory in order to guarantee enough phase

information erasure, to assure that the ballistic term can be averaged out to zero.

Consequently

4⌦ = a!b,n + b |�n|+ c⌫scatt (5.2)

5.1.2 Expected saturation levels from single mode perturbation

theory

Analytic results far from and close to marginal stability,

lead to the choice of parameters ⌘ and �. The saturation levels are reproduced with

a choice of ⌘ such that the momentum exchanged as the distribution flattens due to LBQ

diffusion is equivalent to that exchanged by the flattening of particles in the separatrix due

to canonical perturbation theory. The expression for 4⌦ could in principle be written more

generally in terms of a weighted sum, as used in [29, 30].



Resonance	Broadened	Quasilinear	(RBQ)	code	computation	of	fast	ion	relaxation

Single	mode	saturation Two	isolated	modes Two	overlapping	modes

Upper	plot:	distribution	function	as	a	function	of	the	canonical	toroidal	momentum
Lower	plot:	evolution	of	the	nonlinear	bounce	frequency	(~square	root	of	mode	amplitude)

When	modes	overlap,	there	is	a	sudden	release	of	stored	fast	ion	energy,	which	lead	to	substantial	mode	growth



Example:	DIII-D	discharge	153072

Mode	structure Resonance	broadening	for	a	given	value	of
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2.3 A criterion for chirping onset

It has been shown [8] that a simplified bump-on-tail approach that only accounts for a

single representative value for the collisional coefficients is insufficient to make predictions

for the nonlinear nature of a mode in a tokamak. The missing physics were shown to be the

absence of non-uniform mode structures, (multiple) resonance surfaces and poloidal bounce

averages that account for particle trajectories on a poloidal cross section.

A necessary but not sufficient condition for the existence of fixed-frequency, steady-state

solutions would be that the real component of the right-hand side of Eq. (2.1) be negative

at late times when the response is stationary, i.e. when the nonlinear term is allowed to

balance the linear growth. The delta function � (⌦j (P', E , µ)) that restricts the integration

to the resonance condition can be exploited and the following criterion for the existence of

fixed-frequency oscillations is obtained [8]:
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and N is a normaliation for Crt, which consists in the same sums and integrations that

appear in the numerator of (2.3) but in the absence of Int. In eqs. (2.3) and (2.4) , the

quantities ⌧b, ⌫drag, ⌫stoch, Vn,j and ⌦j are understood to be evaluated at E = E 0 � !P'/n.

Criterion (2.3) was incorporated into NOVA-K making use of a polynomial interpolation for

Int. Crt provides a prediction for the likelihood of a fully nonlinear phenomenon obtained



Whole device modeling using TRANSP	is	interfaced	
with	RBQ	via	a	Probability	Distribution	Function	(PDF)	

PDFs	are	used	actively	in	Kick	
modeling1

Resonance	Broadened	Quasilinear	(RBQ)	code	is	being	interfaced	with	TRANSP

1	Podestà,	PPCF	2014

RBQ	can	self-
consistently	provide:
• mode	amplitude	

evolution
• diffusion	coefficient	

at	any	given	phase	
space	location

• Intermittency	and	
domino	behaviors
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Outcome
• Criterion	gives	confidence	in	the	application	of	quasilinear	modeling;
• Refinement	of	the	fast	ion	diffusivity	that	enters	the	chirping	criterion	is	

being	done	with	the	gyrokinetic code	GTS;
• Experiments	on	DIII-D	to	further	test	the	proposed	chirping	criterion	

predictions;
• Although	a	reduced	model,	RBQ	provides	a	platform	for	rich	dynamics	seen	

in	experiments: it	resolves	velocity	space	and	account	for	losses	and	
intermittency;

• Whole	device	modeling,	RBQ	interfacing	with	TRANSP.
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